Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 104: 104256, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32942217

RESUMO

Marine natural products are recognised as one among the major contributors of several important biological functions. The arguments has made to utilization of natural products against different kinds of infectious diseases. In the present study, Callophycin A was successfully prepared and its anti-candidal activity was evaluated through in-vitro and in-vivo methods. The in-vitro results revealed that, Callophycin A significantly inhibits the azole resistant and sensitive C. albicans. Further, in-vivo animal experiments have shown the effective reduction in CFU of C. albicans from its beginning day of the treatment as compared to the disease control group. At the end of Callophycin A administration, there was a decrease in inflammatory response and immune molecules such as IL-6, IL-12, IL-17, IL-22, TNF-α, macrophages, CD4 and CD8 cells were observed. Whereas the animals in the disease control group expressed all the parameters with the elevated level as compared to the control group. There are no hematological abnormalities such as neutropenia, lymphocytosis and eosinophilia was observed in any animal groups except the disease control group. Finally, the evidence based prediction of anti-candidal efficacious of Callophycin A was demonstrated.


Assuntos
Antifúngicos/farmacologia , Candidíase Vulvovaginal/tratamento farmacológico , Carbolinas/farmacologia , Alga Marinha/química , Animais , Antifúngicos/química , Antifúngicos/isolamento & purificação , Candida albicans/efeitos dos fármacos , Candidíase Vulvovaginal/patologia , Carbolinas/química , Carbolinas/isolamento & purificação , Relação Dose-Resposta a Droga , Farmacorresistência Fúngica/efeitos dos fármacos , Feminino , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
2.
Int J Biol Macromol ; 153: 1335-1349, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730994

RESUMO

Metformin is widely used as a frontline medicine of type-II diabetes. Frequent overdose side-effects and their consequent adversative need to be reduced. The novel source of marine hydrozoa, Thyroscyphus ramosus derived chitosan combined metformin drug was administrated to evaluate the antidiabetic potential on a high-fat diet (HFD) with streptozotocin (STZ) induced diabetic rats. The primary analysis of In vitro antioxidant activity was tested for various solvent dissolved chitosan. Based on their IC50 dose values, CsnAA was chosen for further experiments. The chitosan was combined with metformin by sonication and confirmed through XRD, FTIR and SEM analysis. The enhanced activity was observed in 100 mg/kg metformin combined with CSN500mg/kg. The level of serum bilirubin, total protein, SGH, liver glycogen, Glucose-6-phosphatase and fructose-1,6- phosphatase values were significantly similar to metformin 300 mg/kg treated group. With this beneficiary, the novel chitosan was recommended to administrate with metformin to improve the drug efficacy and reduction of overdose lethal effects.


Assuntos
Quitosana/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Metformina/farmacologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Sinergismo Farmacológico , Insulina/sangue , Masculino , Metformina/uso terapêutico , Ratos , Ratos Wistar , alfa-Amilases/antagonistas & inibidores
3.
Bioorg Chem ; 90: 103072, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260877

RESUMO

In the present study pufferfish, Arothron immaculatus muscle methanol extract (AIME) was used to evaluate the antidiabetic activity against the high-fat diet (HFD) in streptozotocin (STZ) induced diabetic rat models. Initially, the In vitro antioxidant activity of the different muscle extract was evaluated which showed that AIME has higher efficiency to scavenge the free radicals. The animal study results revealed that the AIME could decrease the blood glucose level after 14 days of oral treatment and recover the animal from the severe progression of the disease. The LC-ESI/MS analysis of AIME extract revealed the presence of compounds such as docosahexaenoic acid, adrenic acid, docosanol, codeine and metoprolol. Among these compounds, docosahexaenoic acid, adrenic acid and docosanol are reported for its antidiabetic studies. Hence, the muscle is recommended to consume by humans as natural food in order to overcome the development of diabetes. This is the first study on the muscle extract of marine pufferfish which is used as antidiabetic agent to treat the diabetes-induced in the animal model.


Assuntos
Antioxidantes/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes/farmacologia , Músculo Esquelético/química , Tetraodontiformes/fisiologia , Animais , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/patologia , Insulina/sangue , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...